Code No.: 13646 S

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T) III-Semester Supplementary Examinations, August-2022 Digital Electronics and Logic Design

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

		Part-A ($10 \times 2 =$	20 Mark	(S)					
Q. No.	Stem	of the	question	1	***		M	L	СО	PO
1.	Convert decimal +49 and -49 to binary, using the signed-2's-complement representation, with enough digits to accommodate the numbers.					2	1	1	1	
2.	literals:					2	1	1	1	
	A'C'+ ABC + AC' to t	three lit	terals							
3.	Give a truth table for BCD to	Excess	s-3 code	converte	er.		2	1	2	1
4.	Draw 4-Bit adder circuit.						2	1	2	1
5.	Give the definition of synchronous and asynchronous inputs of flipflops and mention the disadvantage of JK flipflop and suggest the methods to overcome.				2	1	3	1		
6.	Explain how a flip flop can be used as divide by 2 counter.					2	1	3	1	
7.	7. Reduce the number of states in the following state table and tabul the reduced state table.				tabulate	2	2	4	1	
	Next State Output									
	Present State x	c = 0	x = 1	x = 0	x = 1					
	a b	a c	b d	0	0					
	C	a	d	0	0					
	d	e	f	0	1					
	e	a	f	0	1					
	f f	g	f	0	1	i, a tesai				
	8	а	f	0	1	ara ni				
8.	A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and circuit output equation are						2	1	4	1
	$J_A = Bx + B'y' K_A = B'xy'$ $J_B = A'x K_B = A + xy'$ $z = Ax'y' + Bx'y'$									
	Draw the logic diagram.					27.71				
9.	Explain how the ASM chart d									

10.	Write the differences between synchronous and asynchronous sequential circuit.	2	2	4	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Find all the prime implicants for the following Boolean functions, and determine which are essential:	4	2	1	2
	$F(A, B, C, D) = \sum (2,3,4,5,6,7,9,11,12,13)$				
b)	Simplify the following functions, and implement them with two-level NAND gate circuits:	4	2	1	2
	F(A, B, C, D) = AC'D' + A'C + ABC + AB'C + A'C'D'				
12. a)	Implement Full adder with 3*8 decoder and write a VHDL code for implementing Full adder.	4	2	2	1
b)	Simplify the following Boolean functions, implement with a PAL: $W(A, B, C, D) = \sum 2, 12, 13$	4	3	2	2
	$X (A, B, C, D) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)$				
	$Y (A, B, C, D) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$				
	$Z(A, B, C, D) = \sum (1, 2, 8, 12, 13)$				
	and write suitable PAL programming table.				
13. a)	Design 3 -Bit Synchronous Up/Down Counter and Write a VHDL code for JK Flip-Flop.	5	3	4,5	2
b)	Design a modulo-6 counter using a T flip flop.	3	3	4	2
14. a)	Distinguish between Mealy and Moore State machines.	4	3	4	2
b)	Design a sequence detector in a Mealy model, which detects the	4	4	4	2
	sequence 1001 from the continue binary sequences at its input x, construct a circuit in such a way that, it should generate 1 at its output Z, when 1001 sequence detected otherwise 0. (One-bit overlapping case also can be considered).				
15. a)	Explain the different types of hazards in digital circuits.	4	2	4	2
b)	Explain the different components used in ASM charts.	4	2	4	1
16. a)	Explain about different tasks and CAD tools in designing digital circuits.	4	2	5	1
b)	Implement 8*1 Mux with 2*1 Multiplexers.	4	3	2	2
17.	Answer any <i>two</i> of the following:				
a)	Draw the block diagram of Bidirectional shift Register with parallel load and explain its operation with suitable functional diagram.	4	3	3	1
b)	Design Mod-6 asynchronous counter, give relevant state table.	4	3	4	2
c)	Explain the steps in digital hardware design flow.	4	2	5	1
M . M	ks: I : Bloom's Tayonomy Laval: CO: Course Outcome: DO: B				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%